Processes

Fabrication of semiconductors and integrated circuits (ICs) is arguably one of the most advanced manufacturing processes ever developed. A state-of-the-art IC requires a ultra clean environment, ultra pure chemicals and gases, highly sophisticated fabrication tools, and a team with extensive knowledge of chemical engineering, semiconductor physics, modeling, and logistics management. The materials in this section cover the main disciplines or steps used in semiconductor fabrication. They include: Growth and preparation of the starting material (Si, GaAs, or other semiconductor materials), Diffusion, Oxidation, Cleaning, Ion Implantation, Lithography, Chemical Vapor Deposition, Physical Vapor Deposition and Chemical Mechanical Planarization.

Register for an Account

Item

1-Year Online Training Subscription
(Includes this and other materials.)

Cost

$500

Pay Via Credit Card

Add To Shopping Cart

Pay Via Purchase Order/Check

Please fax the printable registration form for online training to us at 1-866-205-0713 to complete your order.

Additional Information

Refund Policy

Crystal Growth

Semiconductor devices and integrated circuits require extremely pure silicon for processing. Refining silicon and creating the wafers is a complex process in and of itself. This course covers the purification methods, the crystal growth process, wafer sawing, polishing and identification, and the epitaxial growth process. We also cover the range of silicon defects, discussing their origins and how to eliminate or mitigate these problems and their effects.

Presentations

Starting Material - Bulk Silicon Process

Wafer Specifications and Defects

Silicon on Insulator Process

Epitaxial Growth Process

Quiz: Crystallinity, Crystal Defects and Crystal Growth

Documents

Starting Material

Videos

NONE

Ion Implantation

Ion implantation is the most accurate and controlled method for placing dopant atoms within the source, drain, threshold adjust regions, and guardbands. Ion implanters acclerate dopant species to high velocities and force them into the silicon lattice to form the transistors, junctions, and other structures in the integrated circuit. In this course we cover the fundamentals of ion implantation, the applications of the technique, the basic equipment configurations, including high voltage and high current systems, and issues associated with the technique.

Presentations

Ion Implantation - Equipment

Ion Implantation Process Issues

Quiz: Ion Implantation

Documents

Ion Implantation Part I - Equipment

Ion Implantation - Process Issues Part 1

Ion Implantation - Process Issues Part 2

Videos

Ion Implantation Animation

Certificate

Ion Implantation Certificate

Thermal Processing

Thermal Processing is an important class of techniques for semiconductor manufacturing. This includes classical thermal techniques like diffusion and oxidation, along with newer techniques that fall into the category of Rapid Thermal Processing (RTP). In this class we cover diffusion (using temperature to drive dopant atoms into the semiconductor) and oxidation (using temperature to grow an oxide - either slowly in a dry environment or quickly in a steam environment). These techniques can be used early in the manufacturing sequence, but cannot be used in the back end of the line due to the high temperatures. They also do not work well with advanced processes. We also cover RTP, where engineers use systems that elevate the temperature for very short periods of time to provide better control.

Presentations

Thermal Processing Overview

Thermal Processing Oxidation and Kinetics

Thermal Processing Equipment and Processing

Thermal Processing Issues and Effects

Oxidation

Thermal Diffusion

Rapid Thermal Processing

Quiz: Thermal Processing

Documents

Thermal Processes and Oxide Material Basics

Thermal Processing Equipment

Thermal Processing Parameters and Dependencies

Videos

NONE

Certificate

Thermal Processing Certificate

Contamination and Cleaning

Cleaning is an important part of most processing steps. We need techniques to remove particulates, liquids, and contamination from the surface of the wafer. This class discusses the techniques that perform these cleaning operations. This includes liquid chemical techniques like the piranha etch, dry cleaning, and aerosol cleaning. We also discuss rinsing and drying techniques in the section.

Presentations

Wafer Cleaning Overview and Procedures

Wafer Cleaning Methods and Equipment

Contamination Control

Quiz: Contamination Monitoring and Wafer Cleaning

Documents

Cleaning Methods

Videos

NONE

Certificate

Contamination and Cleaning Certificate

Vacuum and Plasma Basics

Vacuum Technology is an integral part of the semiconductor industry. Many tools use vacuum chambers and vacuum technology to control the placement of ions, manipulate reactions and depositions, and minimize contamination. This course covers the basics of vacuum systems and the technologies used to create a vacuum. We also discuss plasma basics, since plasma physics is closely tied to vacuum technology, and since we use plasma physics in various semiconductor processing steps like chemical vapor deposition and reactive ion etching.

Presentations

Vacuum Concepts

Vacuum Systems

Plasma Basics

Quiz: Vacuum, Thin Film and Plasma Basics

Documents

NONE

Videos

NONE

Certificate

Vacuum and Plasma Basics Certificate

Physical Vapor Deposition

Physical Vapor Deposition (PVD) is a common method for depositing thin-film metals on a semiconductor device. There are primarily two types of PVD: evaporation and sputtering. This course covers both techniques and describes the advantages and disadvantages of each. It covers the basic properties of thin films and the impact of the vacuum chamber on their quality. It also discusses variations on sputtering, including ionized and collimated sputtering.

Presentations

Evaporation

Thin Film Basics

Sputtered Films

Sputtering

Quiz: Physical Vapor Deposition

Documents

Deposition

Evaporation

Videos

NONE

Certificate

Physical Vapor Deposition Certificate

Chemical Vapor Deposition

Chemical Vapor Deposition (CVD) is a highly versatile process used by the semiconductor industry to deposit materials. CVD allows the deposition of a wider range of materials, and can be used at lower temperatures (under certain conditions) than other deposition techniques. In this course we will cover the main approaches to CVD: Plasma Enhanced CVD (PECVD), Low Pressure CVD (LPCVD), and Atmospheric Pressure CVD (APCVD). We will also cover the applications of CVD, including deposition of dielectric layers like silicon dioxide and silicon nitride, polysilicon, metals like tungsten, and other liner materials like titanium nitride. We will cover the equipment used for CVD, and the issues associated with the technique.

Presentations

CVD - Basics

CVD - Applications

CVD - Epitaxy

Low Pressure CVD

Plasma Enhanced CVD

Quiz: CVD Basics, LPCVD and Epitaxy

Documents

Chemical Vapor Deposition - Applications

Chemical Vapor Deposition - Epitaxy

CVD - Basics

Deposition

Videos

NONE

Certificate

Chemical Vapor Deposition Certificate

Lithography

Lithography is a key component of IC manufacturing. It is also one of the most expensive steps in the IC manufacturing process. Today's ICs go through the lithography step some 20 to 30 times to pattern the isolation layers, transistors, gates, and interconnect. Lithography is also used in the packaging process as well. This material covers the physics of lithography, resolution, the photoresists used in lithography, and lithography techniques.

Presentations

Lithography - Introduction

Lithography - Resolution

Lithography - Resists

Lithography - Subwavelength Issues

Lithography - Future

Quiz: Lithography Photoresist Processing

Quiz: Lithography Image Formation and Photomasks

Documents

Lithography - Introduction

Videos

NONE

Etch

Etch is widely used for removing thin films on semiconductor devices. The industry primarily uses reactive ion etching for layer removal, although wet chemical etching is occasionally used in some processes. This course covers the fundamentals of plasma physics, as well as the application of plasma and reactive ion etching to semiconductor fabrication.

Presentations

Dry Etching Processes

Wet Etching Processes

Plasma Basics

Plasma Etching and RIE

Quiz: Wet Etching and Reactive Ion Etching

Documents

NONE

Videos

NONE

Certificate

Etch Certificate

Chemical Mechanical Polishing

Chemical Mechanical Polishing (CMP) is probably the single most important breakthrough that allowed the semiconductor industry to deposit more than 2 levels of metal reliability and permit the continued scaling of integrated circuit feature sizes. CMP uses a combination of chemicals and mechanical force to planarize the metal and dielectric layers on an integrated circuit. In this course we cover the basic techniques for CMP, the equipment used for CMP, and the applications of the technique.

Presentations

Chemical Mechanical Polishing - Overview

CMP - Equipment

CMP - Applications and Issues

Quiz: Chemical Mechanical Polishing

Documents

Chemical Mechanical Polishing

CMP - Applications and Issues - Part I

CMP - Applications and Issues - Part II

Videos

NONE

Certificate

Chemical Mechanical Polishing Certificate

Copper and Low-K Dielectrics

In order to achieve higher performance in today's integrated circuits, engineers have replaced aluminum and silicon dioxide with newer materials. Many high performance chips use copper interconnect and low-k dielectrics to reduce the RC delay associated with the interconnect. Copper has a lower resistance than aluminum, and has superior electromigration performance. Scientists have developed low-k dielectrics with various materials, like fluorinated glasses, carbon-doped oxides, and nanopore materials with significantly lower dielectric constants. While there are advantages to these materials, there are also issues, like copper contamination in transistors, patterning of copper materials, and structural integrity and strength of low-k dielectrics. We discuss these issues in this course.

Presentations

Low-K Dielectrics

Copper Interconnect

Documents

Copper Interconnect

Videos

NONE

Special Processing Techniques

Scientists and engineers in the semiconductor industry have developed a number of special techniques to address specialized markets and advanced applications. This course covers some of those techniques. This includes atomic layer deposition, which is used increasingly for high-k gate dielectrics and liner materials, bonding and implant techniques for silicon on insulator (SOI) substrates, which are used for low power and radiation environments, new rapid thermal annealing techniques, and advanced ion implantation methods.

Presentations

Special Processing Techniques

Documents

NONE

Videos

NONE